# Emerging NASA Missions and Challenges in Spacecraft Control

5<sup>th</sup> International ESA Conference on Guidance, Navigation and Control Systems
October 22 – 25, 2002

F. Y. Hadaegh
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, Ca. 91109

## Three Eras Of Deep Space Exploration

### Era 1: (1960-1975) "Just get there"

- Enabling technologies for interplanetary space travel
- Inner planets and Earth's moon

### Era 2: (1975-1995) "What is out there?"

- Survey planets and their moons with large spacecraft
- Outer planets and moons

## Era 3: (1995-?) "Smaller, frequent and focused missions"

- High levels of autonomy (less contact with Earth)
- New mission types

## Past Approach

### LARGE SPACECRAFT

- Billion Dollar Missions
- One Big Mission at a Time
- Significant Ground Involvement
- Long Mission Life
- Low Risk Tolerance
- Proven Technologies Only



## The New Paradigm











### SMALL SPACECRAFT

- Faster, Better, Cheaper
- More Missions, Shorter Development Cycles
- High Levels of Autonomy
- New Missions Types
- Rich in Technology, Higher Science Return
- Willingness to Take Risk
- Not Optimal but Good Enough





## Deep Space Control Challenges

- Precision Landing on a Small Bodies
  - Irregular Spinning Body, Uncertain Disturbance Environment
- Formation Flying
  - High Precision Coordination and Control
  - Formation Maneuvers and Station Keeping
- Robotic Exploration of Planetary Surfaces
  - Intelligent Capable Rovers
- Autonomous Rendezvous and Docking
- Inflatable Structures and Balloons
  - Shape Control, Vibration Suppression
- Interferometry
  - Large Space Structures, Multi-Body
  - Integrated Optical, Structural, Thermal control

### Space Interferometry



- Space Interferometry Mission (SIM)
  - Telescopes separated by 10 m
- Optics controlled to nanometer accuracy
- Relative knowledge and metrology to a trillionth of a meter
- Large flexible structures control
- Embedded micro G&C sensors & actuators
- Integrated modeling
  - Structures, thermal, optics, controls, and dynamic disturbances

## Space Interferometry

### **Control Testbed**



Figure 1. Bird's eye view of the MPI tesbed.

### Optical path length control



The Optical Delay Line is designed to equalize the optical path length of the two arms of the Interferometer tobetter than 5 nanometers rms.

### **Active Vibration Suppression**



Six axis active vibration isolator

## Formation Flying Spacecraft

A Set of Spatially Distributed Spacecraft Flying in Formation with the Capability of Interacting and Collaborating with One-another, and Work as a Single Collective Unit, Exhibiting a System-wide Capability to Accomplish Shared Objectives



# Future Formation Flying Mission Concepts











**Destination: Earth** 



Partial List of Science Investigations
Enabled by Distributed Spacecraft Systems:

- Planet finding and imaging
- Resolving the cosmic structure
- 3-D mapping for planetary explorers
- Time-varying gravity field measurements
- Gravity wave detection
- In situ magnetosphere and radiation
- Electrodynamics environment of near-Earth space
- Earth radioactive forcing
- Soil moisture and ocean salinity
- Atmospheric chemistry
- Global precipitation
- Coordinated observing for land imaging
- Vegetation recovery
- Space weather

## Technology Challenges

- Formation control
  - Hi precision sensors
  - Synchronous fleet reconfiguration/reorientation
  - Decentralized distributed control and estimation
  - Relative/absolute position and attitude control for precision interferometry
- Extremely high precision/low noise thrusters, wheels, etc.
- Communication, cross-links, downlinks
- High speed distributed computing, data management & autonomy
  - Collaborative behavior
  - Autonomous fault detection/recovery
  - Coordinated instruments and science planning/processing
  - Efficient numerical integrators which handle large scale variations in states (relative position and attitude)
- · High fidelity modeling and distributed real-time simulation
- HW Testbeds
  - Ground testing of 6dof

## Formation Flying Control



- Precision Constellation of Multiple Spacecraft Form a Single Virtual Science Instrument
- Increased Performance, Accuracy and Reliability
  - Interferometric Imaging Without Large Truss
  - Distributed Computing via Interspacecraft Communication
  - No Single Point Failures
  - Autonomous Formation Keeping, Alignment and Reconfiguration

## Autonomous Formation Flying (AFF) Sensor



Autonomous Formation Flying GN&C Sensor (AFF)

- Similar to a GPS ADS but with 6 receive antennas and 2 receive antennas
  - 4pi steradian coverage (FOV)
- Provide relative measurements: attitude, attitude rates, range, range rate and time
- Ideal for multiple spacecraft in Earth orbit and deep space
  - Formations and constellations
  - Rendezvous and docking
  - Self contain system, does not require NAVSTAR GPS satellites' signals
    - But can accommodate if necessary
- High performance relative measurements
  - ±1 cm ranging, ±1 mm/sec velocity, ±1 arcminute attitude
  - 1m to 1300km operational range as designed

### Starlight



- Two (2) S/C mission
- Technology demonstration for TPF
  - Formation flying
  - Separated S/C optical interferometry
- March 2004 launch
  - Delta II 7325
- Heliocentric orbit
- 6 month mission
- GN&C Requirements
  - 50 to 1010 m baselines
  - S/C attitude control ±1 arcmin
  - S/C attitude knowledge ±10 arcsec
  - S/C translational velocity control ±0.7 mm/sec
  - Formation range control ±3 cm
  - Formation bearing control
    - Acquisition ±0.7 arcmin
    - Observation ±6.7 arcsec

## Starlight







- 2011 launch
- Heliocentric orbit
  - Single launcher
- GN&C Requirements 50 m to ~1 km baselines
  - S/C attitude control ±15 arcsec
  - S/C attitude knowledge ±5 arcsec
  - Formation range control ±5 cm
  - Formation bearing control ±5 arcsec

### Astrometric Measurement

(want to know θ with high level of accuracy)



If you know B & can determine x , then we can sole for heta

## Astrometric Measurement

(want to know θ with high level of accuracy,



- The peak of the interference pattern occurs when the internal path delay equals the external path delay.
- Internal metrology measures internal path delay

## Formation Flying Control

The essential relationship used for imaging is expressed by the Cittert-Zernike formula.



# Formation Flying Estimation Challenges



- AFFGIPS sensors
- Star Tracker
- Gyro
- Accelerameters
- Metrology



- Solar Forces and Loggies
- Sensor Alignments and stakes



- •Centralized/decentralized
- Asynchronized data type
- •Integrated position/attitude estimation
- •Relative state (position or attitude) estimates are highly couple

## Formation Flying Control



Formation Initialization

### Products:

System of methods, architectures, algorithms and software for autonomous precision control (mm-cm, arcsec-arcmin) of formation flying spacecraft.



Formation Observation Slew

### This include:

- formation acquisition, initialization & maintenance, station keeping
- formation maneuver planning and execution
- fault detection and recovery

### • Underlying Technologies:

- Autonomous guidance and control algorithms, software, and testbeds
  - Scalable FF control architectures
  - Autonomous guidance and control laws
  - Formation estimation algorithms
  - Testbed Demonstration of precision translation and synchronized rotations
  - Precision formation controls optimized for time and/or fuel
  - Data fusion of high number of formation sensors across many spacecraft
  - Algorithms for optimal u-v plane mapping of science target
  - Optimal Path planning
  - Collision avoidance



Formation Retargeting Slew



Formation Resigns

### What You Will See in the Demos

- TPF Type Formation Guidance Path Planning
  - Autonomous Control of Formation Spacecraft
  - Autonomous Reconfiguration
  - Collision Avoidance
  - Optimal Path Planning
  - Precision Synchronized Motion

### TPF FF Guidance & Control Demo

### **Spacecraft Description and Sequence of Events**

- 600-700 kg class S/C
  - Sun shade diameter: 15 m for collectors, 12 m for combiner
  - Only collectors equipped with a telescope
- Processing @ 1 hz
- Hardware
  - Thrusters (12 on each S/C, combination of 2N, 5N thrusters highly coupled attitude, translation)
  - AFF, 6 axis IRU, Tracker on each S/C
  - AFF FOV (80° half-cone) tailored to meet TPF configuration
- Sequence of events:
- [0 s] Stacked cluster, combiner in the middle, heliocentric, 1 AU behind earth
- [10 s] Staggered, passive, timer-based, deployment (push-off springs)
- [200 s] Null separation delta V and hold attitude (IRUs only NO AFF, Star Tracker inputs yet)
- [300 s] Go to the TPF configuration
  - 80 m baseline, inertial target = [0.267, 0.535, 0.8018], collision avoidance radius = 10 m
  - Duration 300 sec
  - NO AFF, Star Tracker inputs yet
- [650 s] Enable AFF, tracker data update formation, attitude estimates
- [750 s] Deploy cover, secondary optics
- [950 s] Expand baseline to 120 m duration = 150 sec, same inertial target, baseline orientation
- [1250 s] Contract baseline to 80 m duration = 150 sec, same inertial target, baseline orientation
- [1600 s] Reconfigure reassemble 150° away, duration = 300 sec, same inertial target (No sych. rot.)
- [2100 s] Synchronized rotation 150° arc, broken into 10 linear segments, total duration = 1500 s (IF)
  - 0.1°/sec formation rotation rate

Formation Maneuvers

Initialization



# Formation Flying Control Testbeds





Precision Attitude

Determination/Control Testbed

Precision Position

Determination/Control Testbed

UCLA/JPL Formation Flying Testbeds to Demonstrate Precision FF Control & Reconfiguration

## Formation Flying Ground Testing







Precisic Vitude Tes.

- End-to-end formation flying performance demonstration
  - Closed-loop demo between H/W
     & S/W
  - Large scale demo
- Testbed facility & description
  - 6-DOF wheeled robots with accurate S/C models



### Summary

- Many New and Exciting Future Deep Space Missions
- Intelligent Space Vehicles with Higher Levels of System Autonomy
- New Control System Development Approaches and System Architectures